Copied to
clipboard

G = C3xC23.1D10order 480 = 25·3·5

Direct product of C3 and C23.1D10

direct product, metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C3xC23.1D10, (C6xDic5):2C4, (C2xC6).24D20, C23.D5:1C6, C23.1(C6xD5), C15:11(C23:C4), (C2xDic5):1C12, (C2xC30).153D4, (C22xD5):2C12, (C22xC6).1D10, C22.3(D5xC12), C22.2(C3xD20), C30.81(C22:C4), C6.34(D10:C4), (C22xC30).91C22, (D5xC2xC6):2C4, C5:3(C3xC23:C4), (C5xC22:C4):1C6, C22:C4:1(C3xD5), (C3xC22:C4):1D5, (C2xC6).37(C4xD5), (C2xC5:D4).1C6, (C6xC5:D4).8C2, (C15xC22:C4):1C2, (C2xC10).28(C3xD4), C22.8(C3xC5:D4), (C2xC30).118(C2xC4), (C2xC10).21(C2xC12), C2.4(C3xD10:C4), (C2xC6).61(C5:D4), C10.13(C3xC22:C4), (C3xC23.D5):17C2, (C22xC10).10(C2xC6), SmallGroup(480,84)

Series: Derived Chief Lower central Upper central

C1C2xC10 — C3xC23.1D10
C1C5C10C2xC10C22xC10C22xC30C6xC5:D4 — C3xC23.1D10
C5C10C2xC10 — C3xC23.1D10
C1C6C22xC6C3xC22:C4

Generators and relations for C3xC23.1D10
 G = < a,b,c,d,e | a3=b2=c2=d20=1, e2=b, ab=ba, ac=ca, ad=da, ae=ea, dbd-1=bc=cb, be=eb, cd=dc, ce=ec, ede-1=bd-1 >

Subgroups: 416 in 104 conjugacy classes, 38 normal (all characteristic)
C1, C2, C2, C3, C4, C22, C22, C5, C6, C6, C2xC4, D4, C23, C23, D5, C10, C10, C12, C2xC6, C2xC6, C15, C22:C4, C22:C4, C2xD4, Dic5, C20, D10, C2xC10, C2xC10, C2xC12, C3xD4, C22xC6, C22xC6, C3xD5, C30, C30, C23:C4, C2xDic5, C2xDic5, C5:D4, C2xC20, C22xD5, C22xC10, C3xC22:C4, C3xC22:C4, C6xD4, C3xDic5, C60, C6xD5, C2xC30, C2xC30, C23.D5, C5xC22:C4, C2xC5:D4, C3xC23:C4, C6xDic5, C6xDic5, C3xC5:D4, C2xC60, D5xC2xC6, C22xC30, C23.1D10, C3xC23.D5, C15xC22:C4, C6xC5:D4, C3xC23.1D10
Quotients: C1, C2, C3, C4, C22, C6, C2xC4, D4, D5, C12, C2xC6, C22:C4, D10, C2xC12, C3xD4, C3xD5, C23:C4, C4xD5, D20, C5:D4, C3xC22:C4, C6xD5, D10:C4, C3xC23:C4, D5xC12, C3xD20, C3xC5:D4, C23.1D10, C3xD10:C4, C3xC23.1D10

Smallest permutation representation of C3xC23.1D10
On 120 points
Generators in S120
(1 26 49)(2 27 50)(3 28 51)(4 29 52)(5 30 53)(6 31 54)(7 32 55)(8 33 56)(9 34 57)(10 35 58)(11 36 59)(12 37 60)(13 38 41)(14 39 42)(15 40 43)(16 21 44)(17 22 45)(18 23 46)(19 24 47)(20 25 48)(61 113 84)(62 114 85)(63 115 86)(64 116 87)(65 117 88)(66 118 89)(67 119 90)(68 120 91)(69 101 92)(70 102 93)(71 103 94)(72 104 95)(73 105 96)(74 106 97)(75 107 98)(76 108 99)(77 109 100)(78 110 81)(79 111 82)(80 112 83)
(1 81)(3 83)(5 85)(7 87)(9 89)(11 91)(13 93)(15 95)(17 97)(19 99)(22 74)(24 76)(26 78)(28 80)(30 62)(32 64)(34 66)(36 68)(38 70)(40 72)(41 102)(43 104)(45 106)(47 108)(49 110)(51 112)(53 114)(55 116)(57 118)(59 120)
(1 81)(2 82)(3 83)(4 84)(5 85)(6 86)(7 87)(8 88)(9 89)(10 90)(11 91)(12 92)(13 93)(14 94)(15 95)(16 96)(17 97)(18 98)(19 99)(20 100)(21 73)(22 74)(23 75)(24 76)(25 77)(26 78)(27 79)(28 80)(29 61)(30 62)(31 63)(32 64)(33 65)(34 66)(35 67)(36 68)(37 69)(38 70)(39 71)(40 72)(41 102)(42 103)(43 104)(44 105)(45 106)(46 107)(47 108)(48 109)(49 110)(50 111)(51 112)(52 113)(53 114)(54 115)(55 116)(56 117)(57 118)(58 119)(59 120)(60 101)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100)(101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120)
(1 95 81 15)(2 94)(3 13 83 93)(4 12)(5 91 85 11)(6 90)(7 9 87 89)(10 86)(14 82)(16 20)(17 99 97 19)(18 98)(21 25)(22 76 74 24)(23 75)(26 72 78 40)(27 71)(28 38 80 70)(29 37)(30 68 62 36)(31 67)(32 34 64 66)(35 63)(39 79)(41 112 102 51)(42 111)(43 49 104 110)(44 48)(45 108 106 47)(46 107)(50 103)(52 60)(53 120 114 59)(54 119)(55 57 116 118)(58 115)(61 69)(73 77)(84 92)(96 100)(101 113)(105 109)

G:=sub<Sym(120)| (1,26,49)(2,27,50)(3,28,51)(4,29,52)(5,30,53)(6,31,54)(7,32,55)(8,33,56)(9,34,57)(10,35,58)(11,36,59)(12,37,60)(13,38,41)(14,39,42)(15,40,43)(16,21,44)(17,22,45)(18,23,46)(19,24,47)(20,25,48)(61,113,84)(62,114,85)(63,115,86)(64,116,87)(65,117,88)(66,118,89)(67,119,90)(68,120,91)(69,101,92)(70,102,93)(71,103,94)(72,104,95)(73,105,96)(74,106,97)(75,107,98)(76,108,99)(77,109,100)(78,110,81)(79,111,82)(80,112,83), (1,81)(3,83)(5,85)(7,87)(9,89)(11,91)(13,93)(15,95)(17,97)(19,99)(22,74)(24,76)(26,78)(28,80)(30,62)(32,64)(34,66)(36,68)(38,70)(40,72)(41,102)(43,104)(45,106)(47,108)(49,110)(51,112)(53,114)(55,116)(57,118)(59,120), (1,81)(2,82)(3,83)(4,84)(5,85)(6,86)(7,87)(8,88)(9,89)(10,90)(11,91)(12,92)(13,93)(14,94)(15,95)(16,96)(17,97)(18,98)(19,99)(20,100)(21,73)(22,74)(23,75)(24,76)(25,77)(26,78)(27,79)(28,80)(29,61)(30,62)(31,63)(32,64)(33,65)(34,66)(35,67)(36,68)(37,69)(38,70)(39,71)(40,72)(41,102)(42,103)(43,104)(44,105)(45,106)(46,107)(47,108)(48,109)(49,110)(50,111)(51,112)(52,113)(53,114)(54,115)(55,116)(56,117)(57,118)(58,119)(59,120)(60,101), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120), (1,95,81,15)(2,94)(3,13,83,93)(4,12)(5,91,85,11)(6,90)(7,9,87,89)(10,86)(14,82)(16,20)(17,99,97,19)(18,98)(21,25)(22,76,74,24)(23,75)(26,72,78,40)(27,71)(28,38,80,70)(29,37)(30,68,62,36)(31,67)(32,34,64,66)(35,63)(39,79)(41,112,102,51)(42,111)(43,49,104,110)(44,48)(45,108,106,47)(46,107)(50,103)(52,60)(53,120,114,59)(54,119)(55,57,116,118)(58,115)(61,69)(73,77)(84,92)(96,100)(101,113)(105,109)>;

G:=Group( (1,26,49)(2,27,50)(3,28,51)(4,29,52)(5,30,53)(6,31,54)(7,32,55)(8,33,56)(9,34,57)(10,35,58)(11,36,59)(12,37,60)(13,38,41)(14,39,42)(15,40,43)(16,21,44)(17,22,45)(18,23,46)(19,24,47)(20,25,48)(61,113,84)(62,114,85)(63,115,86)(64,116,87)(65,117,88)(66,118,89)(67,119,90)(68,120,91)(69,101,92)(70,102,93)(71,103,94)(72,104,95)(73,105,96)(74,106,97)(75,107,98)(76,108,99)(77,109,100)(78,110,81)(79,111,82)(80,112,83), (1,81)(3,83)(5,85)(7,87)(9,89)(11,91)(13,93)(15,95)(17,97)(19,99)(22,74)(24,76)(26,78)(28,80)(30,62)(32,64)(34,66)(36,68)(38,70)(40,72)(41,102)(43,104)(45,106)(47,108)(49,110)(51,112)(53,114)(55,116)(57,118)(59,120), (1,81)(2,82)(3,83)(4,84)(5,85)(6,86)(7,87)(8,88)(9,89)(10,90)(11,91)(12,92)(13,93)(14,94)(15,95)(16,96)(17,97)(18,98)(19,99)(20,100)(21,73)(22,74)(23,75)(24,76)(25,77)(26,78)(27,79)(28,80)(29,61)(30,62)(31,63)(32,64)(33,65)(34,66)(35,67)(36,68)(37,69)(38,70)(39,71)(40,72)(41,102)(42,103)(43,104)(44,105)(45,106)(46,107)(47,108)(48,109)(49,110)(50,111)(51,112)(52,113)(53,114)(54,115)(55,116)(56,117)(57,118)(58,119)(59,120)(60,101), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120), (1,95,81,15)(2,94)(3,13,83,93)(4,12)(5,91,85,11)(6,90)(7,9,87,89)(10,86)(14,82)(16,20)(17,99,97,19)(18,98)(21,25)(22,76,74,24)(23,75)(26,72,78,40)(27,71)(28,38,80,70)(29,37)(30,68,62,36)(31,67)(32,34,64,66)(35,63)(39,79)(41,112,102,51)(42,111)(43,49,104,110)(44,48)(45,108,106,47)(46,107)(50,103)(52,60)(53,120,114,59)(54,119)(55,57,116,118)(58,115)(61,69)(73,77)(84,92)(96,100)(101,113)(105,109) );

G=PermutationGroup([[(1,26,49),(2,27,50),(3,28,51),(4,29,52),(5,30,53),(6,31,54),(7,32,55),(8,33,56),(9,34,57),(10,35,58),(11,36,59),(12,37,60),(13,38,41),(14,39,42),(15,40,43),(16,21,44),(17,22,45),(18,23,46),(19,24,47),(20,25,48),(61,113,84),(62,114,85),(63,115,86),(64,116,87),(65,117,88),(66,118,89),(67,119,90),(68,120,91),(69,101,92),(70,102,93),(71,103,94),(72,104,95),(73,105,96),(74,106,97),(75,107,98),(76,108,99),(77,109,100),(78,110,81),(79,111,82),(80,112,83)], [(1,81),(3,83),(5,85),(7,87),(9,89),(11,91),(13,93),(15,95),(17,97),(19,99),(22,74),(24,76),(26,78),(28,80),(30,62),(32,64),(34,66),(36,68),(38,70),(40,72),(41,102),(43,104),(45,106),(47,108),(49,110),(51,112),(53,114),(55,116),(57,118),(59,120)], [(1,81),(2,82),(3,83),(4,84),(5,85),(6,86),(7,87),(8,88),(9,89),(10,90),(11,91),(12,92),(13,93),(14,94),(15,95),(16,96),(17,97),(18,98),(19,99),(20,100),(21,73),(22,74),(23,75),(24,76),(25,77),(26,78),(27,79),(28,80),(29,61),(30,62),(31,63),(32,64),(33,65),(34,66),(35,67),(36,68),(37,69),(38,70),(39,71),(40,72),(41,102),(42,103),(43,104),(44,105),(45,106),(46,107),(47,108),(48,109),(49,110),(50,111),(51,112),(52,113),(53,114),(54,115),(55,116),(56,117),(57,118),(58,119),(59,120),(60,101)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100),(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)], [(1,95,81,15),(2,94),(3,13,83,93),(4,12),(5,91,85,11),(6,90),(7,9,87,89),(10,86),(14,82),(16,20),(17,99,97,19),(18,98),(21,25),(22,76,74,24),(23,75),(26,72,78,40),(27,71),(28,38,80,70),(29,37),(30,68,62,36),(31,67),(32,34,64,66),(35,63),(39,79),(41,112,102,51),(42,111),(43,49,104,110),(44,48),(45,108,106,47),(46,107),(50,103),(52,60),(53,120,114,59),(54,119),(55,57,116,118),(58,115),(61,69),(73,77),(84,92),(96,100),(101,113),(105,109)]])

93 conjugacy classes

class 1 2A2B2C2D2E3A3B4A4B4C4D4E5A5B6A6B6C···6H6I6J10A···10F10G10H10I10J12A12B12C12D12E···12J15A15B15C15D20A···20H30A···30L30M···30T60A···60P
order122222334444455666···66610···10101010101212121212···121515151520···2030···3030···3060···60
size1122220114420202022112···220202···24444444420···2022224···42···24···44···4

93 irreducible representations

dim1111111111112222222222224444
type+++++++++
imageC1C2C2C2C3C4C4C6C6C6C12C12D4D5D10C3xD4C3xD5C4xD5D20C5:D4C6xD5D5xC12C3xD20C3xC5:D4C23:C4C3xC23:C4C23.1D10C3xC23.1D10
kernelC3xC23.1D10C3xC23.D5C15xC22:C4C6xC5:D4C23.1D10C6xDic5D5xC2xC6C23.D5C5xC22:C4C2xC5:D4C2xDic5C22xD5C2xC30C3xC22:C4C22xC6C2xC10C22:C4C2xC6C2xC6C2xC6C23C22C22C22C15C5C3C1
# reps1111222222442224444448881248

Matrix representation of C3xC23.1D10 in GL4(F61) generated by

13000
01300
00130
00013
,
60000
06000
60010
06001
,
60000
06000
00600
00060
,
4360362
10590
5645181
1639600
,
533100
53800
5164360
48561818
G:=sub<GL(4,GF(61))| [13,0,0,0,0,13,0,0,0,0,13,0,0,0,0,13],[60,0,60,0,0,60,0,60,0,0,1,0,0,0,0,1],[60,0,0,0,0,60,0,0,0,0,60,0,0,0,0,60],[43,1,56,16,60,0,45,39,36,59,18,60,2,0,1,0],[53,53,5,48,31,8,16,56,0,0,43,18,0,0,60,18] >;

C3xC23.1D10 in GAP, Magma, Sage, TeX

C_3\times C_2^3._1D_{10}
% in TeX

G:=Group("C3xC2^3.1D10");
// GroupNames label

G:=SmallGroup(480,84);
// by ID

G=gap.SmallGroup(480,84);
# by ID

G:=PCGroup([7,-2,-2,-3,-2,-2,-2,-5,365,92,1683,1271,18822]);
// Polycyclic

G:=Group<a,b,c,d,e|a^3=b^2=c^2=d^20=1,e^2=b,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,d*b*d^-1=b*c=c*b,b*e=e*b,c*d=d*c,c*e=e*c,e*d*e^-1=b*d^-1>;
// generators/relations

׿
x
:
Z
F
o
wr
Q
<